
Abstract— In high energy physics experiment trigger systems,
block memories are utilized for various purposes, especially in
binned searching algorithms. In these algorithms, the storages are
demanded to perform like a large set of registers. The writing and
reading operation must be performed in single clock cycle and
once an event is processed, the memory must be globally reset.
These demands can be fulfilled with registers but the cost of using
registers for large memory is unaffordable. Another common
requirement is the boundary coverage feature during reading
process. When a memory bin is addressed, the stored contents in
the addressed bin and its neighboring bin must be output
simultaneously. In this paper, a register-like block memory design
scheme is described, which allows updating memory locations in
single clock cycle, reading two adjacent bins and effectively
refreshing entire memory within a single clock. The
implementation and test results are presented.

Index Terms— Trigger System, FPGA Applications

I. INTRODUCTION

N modern high energy physics experiments trigger systems,
data are usually reorganized in binned memories. Consider a

multilayer detector as illustrated in Fig. 1, hit data from each
detector layer arrive in random order and are to be stored in a
binned memory for future reading out.

In this example, charged particle tracks pass through several
detector layers. The data from the particle hits are to be
collected together so that tracks can be reconstructed for further
trigger algorithm. We consider a sub-process of using a track
segment candidate based on the hits from the first two detector
layers to find the hit data on the third layer.

In the first step of this sub-process, detector raw data are
stored in the memory bins. A bin in this example represents a
range of coordinate on the third detector surface and in many

Manuscript received Feb 2, 2018. This work was supported in part by Fermi
Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the
United States Department of Energy.

cases, a bin may include several detector elements such as
silicon strips, scintillating fibers or straw tubes. Therefore, in
an event, it is possible to have multiple hits within a bin. Once
all hits in an event are written into the memory, they are to be
read out according to the location being pointed by the track
segment.

An crucial requirement is the boundary coverage during the
readout process. The track segment points to a location on the
surface of the detector and an integer is derived from the
location coordinate as the bin number (BIN_NB) which is used
to address the memory. It is very common that the track
segment points to a location near a boundary of a bin and the
actual hit data may be store either in the pointed bin or in the
neighboring bin. It is usually necessary to bring hit data from
both bins out for finer track fitting processes.

This type of boundary coverage may also be required in
many other applications using FPGA data processing functions
and it is useful to develop a simple functional block to fulfill the
requirement.

The detector data are fed into the trigger system and in the
processing stages of the firmware, the data are usually fetched
one hit per clock cycle. The memory block bins are to be
updated as the data fetched in every clock cycle. While writing
a data into a memory within one clock is not difficult, it is a
challenge to update the memory location within a single clock
cycle. To update a memory bin, the contents of the bin must
first be read out and the new hit data is concatenated into the
original data word to form a new data word which is then
written back into the memory bin. The updating process takes
several clock cycles to complete which requires a dual port
memory with a reading port and a writing port and a suitably
designed pipeline so that the data can be processed one hit per
clock cycle. Note that once a hit to be filled into a bin is fed
into the pipeline, another hit to be filled into the same bin can
come as early as the next cycle. In this case, the first data has
not been written back into the memory bin before the reading
cycle of the second update process. This is similar as the read-
after-write (RAW) hazard in contemporary microprocessor
design. To solve this hazard, a data forwarding scheme is
utilized and we will discuss the detail in later sections.

The trigger firmware processes data in event-based fashion,

The author is with Fermi National Accelerator Laboratory, Batavia, IL
60510 USA (phone: 630-840-8911; fax: 630-840-2950; e-mail: jywu168@
fnal.gov).

Register-Like Block RAM with Boundary
Coverage and Its Applications for High Energy

Physics Trigger Systems
Jinyuan Wu

I

Fig. 1. An application of block memory bins used for in high energy physics
experiment trigger system.

FERMILAB-CONF-18-822-E

and an “event” in collider experiments is usually a beam
crossing. The process takes three phases: (1) storing data or
“booking”, (2) reading data and (3) refreshing the memory. The
input hit data are first fed in one word per clock cycle and are
stored into the memory bins. After filling up the memory with
the data from an event, the trigger algorithm will search the data
based on the index of the bins and read them out. Note that the
searching process may not address all bins containing the hit
data and it may also address empty bins. After reading process,
a single clock refreshing command is issued by the users and all
memory bins will be effectively cleared to prepare for the next
event. It is well known that regular block memories do not
support global reset. To fulfill this requirement, an event ID
tagging scheme is used.

The single clock updating and global refreshing schemes
developed in our previous work [1-2] are combined into a
unified scheme in this work. In this paper, the full structure of
the register-like block RAM is first discussed in Section II,
followed by implementation and test results Section III.

II. THE STRUCTURE OF REGISTER-LIKE BLOCK RAM
To fulfill the requirements of single clock updating, reading

and refreshing operations, the functional block is organized as
a set of pipelines. The block diagram of register-like block
RAM is shown in Fig. 2. It can be unfolded based on its
operating logic for clarity as shown in Fig. 3.

During the process of data booking, data to be stored

(DATA), the operating command (CMD) and the bin index
(BIN_NB) arrive to the input ports of the pipeline at the same
clock cycle. The bin index is selected to feed into port AA to
read out the contents stored in the memory bin. After two clock
cycles, the contents appear at port QA to be checked in the
EVID Check Unit. Several bits in the memory words are
assigned as event ID field, if the current location was written
during the booking process in the current event, this field will
store the current event ID. Otherwise, it will store the event ID
from old events. The event ID is checked with the current event
ID which is maintained in Refresh Counter Control & Pipeline
block. If the stored contents are from the current event, it will
be sent to the Data Update Unit for further process. If not, the
stored contents will be ignored and all output bits can be
optionally set to zeros.

In the Data Update Unit, the new input data (after appropriate

Fig. 2. Block diagram of the register-like block RAM

Fig. 3. Logic structure of the register-like block RAM

pipeline delay) and the old contents in the memory bin are used
to build a new data word. The updating algorithm can be
chosen by the users depending the application. For example,
the old contents can be moved upward to higher bits and the
new data will be inserted to the lower bits of the data word,
which will allow the memory bin to store multiple hits. For
another popular application, histogram booking, the new input
data is always 1 (so it is unnecessary to implement the Input
Data Pipeline), the old content is simply added by 1.

The output of the Data Update Unit is sent to the second
memory port DB to write back to the memory bin. At the same
time, the result is also sent to the Data Forwarding Unit. The
Forward Control block checks input data bin number to
determine whether the Data Update Unit should use the data
read out from the memory or there is a newer data in the Data
Forwarding Unit. The Data Forwarding Unit always contains
the most current values of the memory bins that are just
updated.

After data booking process, the data reading out process uses
the same pipeline and the read address is delayed and sent to
port AB and the contents appear at QB, which are checked by
another EVID Check Unit.

The reason of delaying the read out process is to wait for the
memory bins fully updated. In this arrangement, the last
writing command can be immediately followed by the first
reading command without losing a clock cycle, which is crucial
for high luminosity trigger systems.

Note that during the reading process, output contents from
memory port QA is not used for Data Update Unit as in the
booking process. Therefore, the A port of the memory is free
to be used to read out contents in any bin. While port BA is
addressed with BIN_NB (after appropriately delayed in the
pipeline), we generate a new integer BIN_NB + 1 or -1 to
address AA. This way, the outputs from QA and QB contain
raw data from two neighboring bins allowing suitable boundary
coverage.

After the reading process, a single clock cycle REFRESH
command is issued which overwrite a rotationally selected
memory bin (after several cycles of pipeline delay) and changes
the EVID for the new event (or beam crossing in some
applications). The booking command for the next event can be
issued immediately following the refresh cycle. The book, read
and refresh processes for an event can be connected end-to-end
together without any missing clock cycles.

After the reading process, a single clock cycle REFRESH
command is issued which overwrite a rotationally selected
memory bin (after several cycles of pipeline delay) and changes
the EVID for the new event (or beam crossing in some
applications). The writing/booking command for the next event
can be issued immediately following the refresh cycle. The
write, read and refresh processes for an event can be connected
end-to-end together without any missing clock cycles.

It should be point out that during the booking and the reading
processes, the logic position of the memory port A in the
pipeline is different.

During the booking process, the port A is used to read out the
old contents in a bin stored in the memory. Therefore, it is

addressed with the BIN_NB immediately at the early stage in
the pipeline. For reading process, however, the port A is used
to read out data in the neighboring bin. In this case, it is
addressed with a delayed version of BIN_NB +1 or -1 and its
logic position in the pipeline becomes the same as the port B.

III. IMPLEMENTATION AND TEST RESULTS

The register-like block RAM is designed, implemented and
tested in an Altera Cyclone V FPGA device (5CEBA4F23C7N)
[3]. The actual top design interface block is shown in Fig. 4.
The block uses 466 logic elements (ALM) which is about 3%
of the target device.

In this demo design, the input hit data is chosen to be 8-bit

for simplicity. The block RAM are divided into 256 memory
bins with 36 bits each that can store up to 3 hits and a 12-bit
event ID. The block is driven by a 250 MHz clock which is
generated with a phase lock loop (PLL) inside the FPGA
device. In every clock cycle, an 18-bit word (KDB[17..0])
containing a 2-bit command, an 8-bit data and an 8-bit bin
number is fed into the block. The 2-bit command word instructs
the block to operate one of the four processes: NOOP, Book,
Read and Refresh.

In book operation, the input data is filled into the memory
indexed by the bin number while in read operation, the data
word is primarily ignored and only the bin number is used. In
our design, bit 0 of the data word is used as the “half-bin” bit of
the bin number which is used to indicate if the actual index is
closer to higher or lower boundary of the bin. When this bit is
1, the higher bin is output from the QA port and when it is 0,
the lower bin is output. (Note that QB port always output
contents of the addressed bin).

Some operation examples of the register-like block RAM are
presented in Fig. 5. In the table, the second column lists the
output words from the FPGA module showing the test results.
Each line represents a 250 MHz clock cycle. In each clock
cycle, the functional block may perform NOOP, Book, Read or
Refresh operation. In the event shown, we have written data
A3, B3 into bin number 03, A4, B4 into 04, A5, B5, C5 into 05
and so on during the Book processes. Note that in this example,
multiple data words may be written into a memory bin and the
two words to be written into the same bin can be as close as in
two adjacent clock cycles. With appropriately designed data
forwarding unit, the functional block will update the addressed
memory bin correctly regardless the number of clock cycles
between the book operations.

The Read commend can be issued immediately after the last
Book command. When a memory bin is read, the contents read
out consist both the data written and the event ID (EVID) when
the bin was updated. The stored EVID is compared with the

Fig. 4. The actual top design interface block of the register-like block RAM

current event ID and only if they are identical, as shown in line
21 to 27, the data bits stored in the bin is considered valid. If
the stored EVID is different than the current event ID, the data
in the bin will be treated as invalid and the bin is considered
empty. For example, at line 31, 34 and 35, some non-zero
numbers are read from corresponding bins, which are ignored
since they are left over from old events.
 The last three column contains output data from memory port
A for boundary coverage. In this example, the memory bin at
BIN_NB -1 is addressed in each read operation. For example,
at line 22, a read bin 04 command is issued, stored data in both
bin 04 and 03 are output to port B and port A, respectively.

Once all Read commands are issued for an event, a Refresh
command can be issued immediately as shown in this example.
The Refresh command uses only one clock cycle to overwrite a
rotationally chosen memory location and to increase the event
ID counter. At line 38, the Refresh command increased EVID
from 396 to 397. A new Book operation of the next event can
be started without wasting any clock cycles.

As a further verification of the design, several thousands of
events are processed through the sequence of Refresh, Book
and Read operations. Along with the current event, several
recent events and several very old events are selected and
plotted in Fig. 6.

For convenience of visualization, the bin number and data

values written into the memory bins are used as X and Y
coordinates in the plot. Each dot represents a stored data and
the data points belonging to an event are connected.

The stored data has a range of 0 to 255 but a common
constant is added to all data point while making the plot. (For
the plot above the constant is 512.)

After finish booking all data points in the current event, data
in all 256 memory bins are read out and plotted as shown in Fig.
7.

Fig. 6. Visualization of several events booked into the memory

Fig. 5. Some examples of the operations of the register-like block RAM

It can be seen that all data points written during the current

event and most points for recent event are seen in the memory
bins. The memory bins containing data from current event can
be easily identified. These data points identified as belonging
the current event are added by a constant 256 in the spread sheet
while making the plot to show them in the top portion of the
plot for clarity.

Also, note that all data points written during the old events
do not exist since they are erased in the refresh processes. Some
points from the recent events may also be erased.

To study the refreshing process, a few thousands events are
processed in the register-like block RAM and the lower 9 bits
of event ID in all 256 bins are plotted as shown in Fig. 6.

In this example, current event ID is 450 and highest dots in

the plot represent data being written in the current event.
In every event, the refresh operation overwrites 1 bin

rotationally selected from 256 bins. Therefore, the oldest event
ID that exists in the entire memory is at most 256 events earlier
than the current event. Some bins may contain newer event ID
if they are used in the past 256 events. If we store 9 or more
bits as event ID, the counter rollover will not cause mistakes
during the event ID comparison. Similarly, at least 10, 11 or 12
bits should be used if the block RAM has 512, 1024 or 2048
bins.

IV. DISCUSSIONS
A register-like block RAM is design, implemented and

tested. Single clock writing, reading and refreshing
performance allows wide applications in various high energy
physics trigger systems.

The firmware scheme allows designers to insert more
pipeline stages into complex combination logics. In our design,
both the EVID Check Unit and the Data Update Unit are
pipeline stages, respectively. This way, the operating speed
degrading caused by the complex combination logics is
negligible. The firmware operates at 250 MHz which is nearly
the highest operating speed of the block RAM resource in this
device.

REFERENCES
[1] J. Wu, “Register-Like Block RAM: Implementation, Testing in FPGA

and Applications for High Energy Physics Trigger Systems,” in 2016
IEEE Real Time Conference 2016, available via:
{https://indico.cern.ch/event/390748/contributions/1825169/}

[2] H. Sadrozinski & J. Wu, “Applications of Field-Programmable Gate
Arrays in Scientific Research”, Taylor & Francis, December 2010.

[3] Altera Corporation, “Cyclone III Device Handbook”, (2010) available
via: {http://www.altera.com/}

Fig. 7. Data points stored in the memory bins

Fig. 6. Event ID stored in 256 bins

